[ GLOBAL World Home | GLOBALLib | Contact ]

## st_e28.gms:

#### References:

• Colville, A R, A Comparative Study of Nonlinear Programming Codes. In Kuhn, H W, Ed, Princeton Symposium on Mathematical Programming. Princeton Univ. Press, 1970.
• Tawarmalani, M, and Sahinidis, N, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, 2002.

Point: p1
Best known point: p1 with value -30665.5387

* NLP written by GAMS Convert at 08/29/02 12:53:46 * * Equation counts * Total E G L N X C * 5 4 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 10 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 27 11 16 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,objvar; Positive Variables x1,x4; Equations e1,e2,e3,e4,e5; e1.. 5*x4 - x5 + 7*x7 - x9 =G= 0; e2.. - (0.0056858*x6*x9 + 0.0006262*x5*x8 - 0.0022053*x7*x9) + x1 + 2*x4 =E= 85.334407; e3.. - (0.0071317*x6*x9 + 0.0029955*x5*x6 + 0.0021813*sqr(x7)) + x2 =E= 80.51249; e4.. - (0.0047026*x7*x9 + 0.0012547*x5*x7 + 0.0019085*x7*x8) + x3 + 4*x4 =E= 9.300961; e5.. - (5.3578547*sqr(x7) + 0.8356891*x5*x9 + 37.293239*x5) - 5000*x4 + objvar =E= -40792.141; * set non default bounds x1.up = 92; x2.lo = 90; x2.up = 110; x3.lo = 20; x3.up = 25; x5.lo = 78; x5.up = 102; x6.lo = 33; x6.up = 45; x7.lo = 27; x7.up = 45; x8.lo = 27; x8.up = 45; x9.lo = 27; x9.up = 45; * set non default levels x5.l = 78.62; x6.l = 33.44; x7.l = 31.07; x8.l = 44.18; x9.l = 35.22; * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;