[ GLOBAL World Home | GLOBALLib | Contact ]

## ex7_2_1.gms:

#### References:

• Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding, S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, 1999.
• Dembo, R S, A Set of Geometric Programming Test Problems and Their Solutions. Math. Prog. 10 (1976), 192-213.
• Original source: Global Model of Chapter 7 ex7.2.1.gms from Floudas e.a. Test Problems

Point:

* NLP written by GAMS Convert at 07/19/01 13:39:47 * * Equation counts * Total E G L N X * 15 1 0 14 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 8 8 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 46 11 35 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15; e1.. - (0.035*x1*x6 - 0.063*x3*x5 + 1.715*x1 + 4.0565*x3) - 10*x2 + objvar =E= 3000; e2.. 0.0059553571*sqr(x6) + 0.88392857*x3/x1 - 0.1175625*x6 =L= 1; e3.. 1.1088*x1/x3 + 0.1303533*x1/x3*x6 - 0.0066033*x1/x3*sqr(x6) =L= 1; e4.. 0.00066173269*sqr(x6) - 0.019120592*x6 - 0.0056595559*x4 + 0.017239878*x5 =L= 1; e5.. 56.85075/x5 + 1.08702*x6/x5 + 0.32175*x4/x5 - 0.03762*sqr(x6)/x5 =L= 1; e6.. 2462.3121*x2/x3/x4 - 25.125634*x2/x3 + 0.006198*x7 =L= 1; e7.. 161.18996/x7 + 5000*x2/x3/x7 - 489510*x2/x3/x4/x7 =L= 1; e8.. 44.333333/x5 + 0.33*x7/x5 =L= 1; e9.. 0.022556*x5 - 0.007595*x7 =L= 1; e10.. - 0.0005*x1 + 0.00061*x3 =L= 1; e11.. 0.819672*x1/x3 + 0.819672/x3 =L= 1; e12.. 24500*x2/x3/x4 - 250*x2/x3 =L= 1; e13.. 1.2244898e-5*x3/x2*x4 + 0.010204082*x4 =L= 1; e14.. 6.25e-5*x1*x6 + 6.25e-5*x1 - 7.625E-5*x3 =L= 1; e15.. 1.22*x3/x1 + 1/x1 - x6 =L= 1; * set non default bounds x1.lo = 1500; x1.up = 2000; x2.lo = 1; x2.up = 120; x3.lo = 3000; x3.up = 3500; x4.lo = 85; x4.up = 93; x5.lo = 90; x5.up = 95; x6.lo = 3; x6.up = 12; x7.lo = 145; x7.up = 162; * set non default levels * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;