[ GLOBAL World Home | GLOBALLib | Contact ]

ex14_1_5.gms:

References:

• Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding, S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, 1999.
• Kearfott, R, and Novoa, M, INTBIS, A Portable Interval Newton Bisection Package. ACM Trans. Math. Soft. 16 (1990), 152-157.
• Original source: Global Model of Chapter 14 ex14.1.5.gms from Floudas e.a. Test Problems

Point: p1
Best known point: p1 with value 0.0000

* NLP written by GAMS Convert at 07/19/01 13:40:25 * * Equation counts * Total E G L N X * 7 5 0 2 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 34 24 10 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,objvar; Equations e1,e2,e3,e4,e5,e6,e7; e1.. - x6 + objvar =E= 0; e2.. 2*x1 + x2 + x3 + x4 + x5 =E= 6; e3.. x1 + 2*x2 + x3 + x4 + x5 =E= 6; e4.. x1 + x2 + 2*x3 + x4 + x5 =E= 6; e5.. x1 + x2 + x3 + 2*x4 + x5 =E= 6; e6.. x1*x2*x3*x4*x5 - x6 =L= 1; e7.. - x1*x2*x3*x4*x5 - x6 =L= -1; * set non default bounds x1.lo = -2; x1.up = 2; x2.lo = -2; x2.up = 2; x3.lo = -2; x3.up = 2; x4.lo = -2; x4.up = 2; x5.lo = -2; x5.up = 2; * set non default levels * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;