[ GLOBAL World Home | GLOBALLib | Contact ]

## abel.gms:

#### Reference:

• Kendrick, D, Caution and Probing in a Macroeconomic Model. Journal of Economic Dynamics and Control 4, 2 (1982).
• Original source: GAMS Model of abel.gms from GAMS Model Library

Point:

* NLP written by GAMS Convert at 07/26/01 12:21:55 * * Equation counts * Total E G L N X * 15 15 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 31 31 0 0 0 0 0 0 * FX 2 2 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 101 71 30 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15; e1.. - (0.5*((0.0625*x1 - 24.24375)*(x1 - 387.9) + (x9 - 85.3)*(x9 - 85.3) + ( 0.0625*x2 - 24.425578125)*(x2 - 390.80925) + (x10 - 85.93975)*(x10 - 85.93975) + (0.0625*x3 - 24.6087699609375)*(x3 - 393.740319375) + (x11 - 86.584298125)*(x11 - 86.584298125) + (0.0625*x4 - 24.7933357356445)*(x4 - 396.693371770313) + (x12 - 87.2336803609375)*(x12 - 87.2336803609375) + ( 0.0625*x5 - 24.9792857536619)*(x5 - 399.66857205859) + (x13 - 87.8879329636445)*(x13 - 87.8879329636445) + (0.0625*x6 - 25.1666303968143 )*(x6 - 402.666086349029) + (x14 - 88.5470924608719)*(x14 - 88.5470924608719) + (0.0625*x7 - 25.3553801247904)*(x7 - 405.686081996647) + (x15 - 89.2111956543284)*(x15 - 89.2111956543284) + (6.25*x8 - 2554.55454757264)*(x8 - 408.728727611622) + (100*x16 - 8988.02796217359)*( x16 - 89.8802796217359)) + 0.5*((x17 - 110.5)*(x17 - 110.5) + (0.444*x24 - 65.3124)*(x24 - 147.1) + (x18 - 111.32875)*(x18 - 111.32875) + (0.444* x25 - 65.802243)*(x25 - 148.20325) + (x19 - 112.163715625)*(x19 - 112.163715625) + (0.444*x26 - 66.2957598225)*(x26 - 149.314774375) + (x20 - 113.004943492188)*(x20 - 113.004943492188) + (0.444*x27 - 66.7929780211688)*(x27 - 150.434635182813) + (x21 - 113.852480568379)*(x21 - 113.852480568379) + (0.444*x28 - 67.2939253563275)*(x28 - 151.562894946684) + (x22 - 114.706374172642)*(x22 - 114.706374172642) + ( 0.444*x29 - 67.7986297965)*(x29 - 152.699616658784) + (x23 - 115.566671978937)*(x23 - 115.566671978937) + (0.444*x30 - 68.3071195199738 )*(x30 - 153.844863783725))) + objvar =E= 0; e2.. - 0.914*x1 + x2 + 0.016*x9 - 0.305*x17 - 0.424*x24 =E= -59.4; e3.. - 0.914*x2 + x3 + 0.016*x10 - 0.305*x18 - 0.424*x25 =E= -59.4; e4.. - 0.914*x3 + x4 + 0.016*x11 - 0.305*x19 - 0.424*x26 =E= -59.4; e5.. - 0.914*x4 + x5 + 0.016*x12 - 0.305*x20 - 0.424*x27 =E= -59.4; e6.. - 0.914*x5 + x6 + 0.016*x13 - 0.305*x21 - 0.424*x28 =E= -59.4; e7.. - 0.914*x6 + x7 + 0.016*x14 - 0.305*x22 - 0.424*x29 =E= -59.4; e8.. - 0.914*x7 + x8 + 0.016*x15 - 0.305*x23 - 0.424*x30 =E= -59.4; e9.. - 0.097*x1 - 0.424*x9 + x10 + 0.101*x17 - 1.459*x24 =E= -184.7; e10.. - 0.097*x2 - 0.424*x10 + x11 + 0.101*x18 - 1.459*x25 =E= -184.7; e11.. - 0.097*x3 - 0.424*x11 + x12 + 0.101*x19 - 1.459*x26 =E= -184.7; e12.. - 0.097*x4 - 0.424*x12 + x13 + 0.101*x20 - 1.459*x27 =E= -184.7; e13.. - 0.097*x5 - 0.424*x13 + x14 + 0.101*x21 - 1.459*x28 =E= -184.7; e14.. - 0.097*x6 - 0.424*x14 + x15 + 0.101*x22 - 1.459*x29 =E= -184.7; e15.. - 0.097*x7 - 0.424*x15 + x16 + 0.101*x23 - 1.459*x30 =E= -184.7; * set non default bounds x1.fx = 387.9; x9.fx = 85.3; * set non default levels x2.l = 387.9; x3.l = 387.9; x4.l = 387.9; x5.l = 387.9; x6.l = 387.9; x7.l = 387.9; x8.l = 387.9; x10.l = 85.3; x11.l = 85.3; x12.l = 85.3; x13.l = 85.3; x14.l = 85.3; x15.l = 85.3; x16.l = 85.3; x17.l = 110.5; x18.l = 110.5; x19.l = 110.5; x20.l = 110.5; x21.l = 110.5; x22.l = 110.5; x23.l = 110.5; x24.l = 147.1; x25.l = 147.1; x26.l = 147.1; x27.l = 147.1; x28.l = 147.1; x29.l = 147.1; x30.l = 147.1; * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;