[ MINLP World Home | MINLPLib | Contact ]

st_miqp5.gms:

References:

• Tawarmalani, M, and Sahinidis, N, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, 2002.
• Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, 1999. PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne

Point: p1
Best known point (p1): Solution value -333.89 (global optimum, BARON certificate)

\$offlisting * MINLP written by GAMS Convert at 08/31/02 19:51:30 * * Equation counts * Total E G L N X C * 14 1 3 10 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 8 6 0 2 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 75 73 2 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,x3,x4,x5,x6,x7,objvar; Integer Variables i1,i2; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14; e1.. - 1.93414531698*x3 + 1.80314509442*x4 + 2.89695789508*x5 + 0.729324957489*x6 + 3.8837442915*x7 =L= 60; e2.. - 1.13150591228*x3 + 1.10500971967*x4 - 1.01838569726*x5 + 2.62556984696*x6 + 4.85468036438*x7 =L= 60; e3.. - 0.0524800119769*x3 - 0.904837825133*x4 + 0.209520819817*x5 - 0.291729982996*x6 - 0.222506183367*x7 =L= 0; e4.. 0.0524800119769*x3 + 0.904837825133*x4 - 0.209520819817*x5 + 0.291729982996*x6 + 0.222506183367*x7 =L= 1; e5.. 0.445391966818*x3 + 0.301519984248*x4 + 0.587645368916*x5 - 0.145864991498*x6 - 0.586607210695*x7 =L= 0; e6.. - 0.445391966818*x3 - 0.301519984248*x4 - 0.587645368916*x5 + 0.145864991498*x6 + 0.586607210695*x7 =L= 1; e7.. - 0.328188665272*x3 + 0.199986646277*x4 + 0.506106406938*x5 - 0.583459965992*x6 + 0.505695871289*x7 =G= 0; e8.. - 0.345682002598*x3 - 0.101625962101*x4 + 0.57594668021*x5 + 0.729324957489*x6 + 0.0809113394063*x7 =G= 0; e9.. 0.756087294764*x3 - 0.200079270407*x4 + 0.151379235251*x5 + 0.145864991498*x6 + 0.586607210695*x7 =G= 0; e10.. - i1 + 0.0524800119769*x3 + 0.904837825133*x4 - 0.209520819817*x5 + 0.291729982996*x6 + 0.222506183367*x7 =L= 0; e11.. i1 - 0.0524800119769*x3 - 0.904837825133*x4 + 0.209520819817*x5 - 0.291729982996*x6 - 0.222506183367*x7 =L= 0; e12.. - i2 - 0.445391966818*x3 - 0.301519984248*x4 - 0.587645368916*x5 + 0.145864991498*x6 + 0.586607210695*x7 =L= 0; e13.. i2 + 0.445391966818*x3 + 0.301519984248*x4 + 0.587645368916*x5 - 0.145864991498*x6 - 0.586607210695*x7 =L= 0; e14.. - (5*x6*x6 - 0.875189948987*x6 + 52*x7*x7 - 192.710582631*x7) + 54.0615511462*x3 + 45.2691026456*x4 + 33.0896119339*x5 + objvar =E= 0; * set non default bounds i1.up = 1; i2.up = 1; x3.lo = -7.24380468458; x3.up = 22.6826188429; x4.lo = -6.0023781122; x4.up = 3.80464419615; x5.lo = -0.797166188733; x5.up = 11.5189336042; x6.lo = -8.75189948987; x6.up = 14.5864991498; x7.lo = 8.98296319621E-17; x7.up = 19.4187214575; \$if set nostart \$goto modeldef * set non default levels * set non default marginals \$label modeldef Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' \$if not set MINLP \$set MINLP MINLP Solve m using %MINLP% minimizing objvar;