[ MINLP World Home | MINLPLib | Contact ]

## prob10.gms:

#### Reference:

• Westerlund, T, and Lundqvist K., Alpha-ECP, Version 5.01 An Interactive MINLP-Solver Based on the Extended Cutting Plane Method, Report 01-178-A. Tech. rep., Process Design Laboratory at Abo University, 2001.

Point: p1
Best known point (p1): Solution value 3.45 (global optimum, LINDOGLOBAL certificate)

\$offlisting * MINLP written by GAMS Convert at 07/02/03 17:54:36 * * Equation counts * Total E G L N X C * 3 1 0 2 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 2 0 1 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 7 5 2 0 * * Solve m using MINLP minimizing objvar; Variables objvar,x2,i3; Positive Variables x2; Integer Variables i3; Equations e1,e2,e3; e1.. 0.7*x2 + i3 =L= 7; e2.. 2.5*x2 + i3 =L= 19; e3.. 1.1*(sqr(2*x2 - 10) + sqr(i3 - 5)) + sin(sqr(2*x2 - 10) + sqr(i3 - 5)) - objvar =E= 0; * set non default bounds objvar.lo = -1000; objvar.up = 10; x2.up = 10; i3.up = 10; \$if set nostart \$goto modeldef * set non default levels * set non default marginals \$label modeldef Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' \$if not set MINLP \$set MINLP MINLP Solve m using %MINLP% minimizing objvar;