[ GLOBAL World Home | GLOBALLib | Contact ]

## process.gms:

#### Reference:

• Bracken, J, and McCormick, G P, Chapter 4. In Selected Applications of Nonlinear Programming. John Wiley and Sons, New York, 1968.
• Original source: GAMS Model of process.gms from GAMS Model Library

Point: p1
Best known point: p1 with value -5.6733

* NLP written by GAMS Convert at 07/30/01 17:04:29 * * Equation counts * Total E G L N X * 8 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 28 17 11 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,objvar; Positive Variables x2,x3,x4,x5; Equations e1,e2,e3,e4,e5,e6,e7,e8; e1.. - x1*(1.12 + 0.13167*x8 - 0.00667*sqr(x8)) + x4 =E= 0; e2.. - x1 + 1.22*x4 - x5 =E= 0; e3.. - 0.001*x4*x9*x6/(98 - x6) + x3 =E= 0; e4.. - (1.098*x8 - 0.038*sqr(x8)) - 0.325*x6 + x7 =E= 57.425; e5.. - (x2 + x5)/x1 + x8 =E= 0; e6.. x9 + 0.222*x10 =E= 35.82; e7.. - 3*x7 + x10 =E= -133; e8.. - 0.063*x4*x7 + 5.04*x1 + 0.035*x2 + 10*x3 + 3.36*x5 - objvar =E= 0; * set non default bounds x1.lo = 10; x1.up = 2000; x2.up = 16000; x3.up = 120; x4.up = 5000; x5.up = 2000; x6.lo = 85; x6.up = 93; x7.lo = 90; x7.up = 95; x8.lo = 3; x8.up = 12; x9.lo = 1.2; x9.up = 4; x10.lo = 145; x10.up = 162; * set non default levels x1.l = 1745; x2.l = 12000; x3.l = 110; x4.l = 3048; x5.l = 1974; x6.l = 89.2; x7.l = 92.8; x8.l = 8; x9.l = 3.6; objvar.l = -872; * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;