 [ GLOBAL World Home | GLOBALLib | Contact ]

## least.gms:

#### Reference:

• Bracken, J, and McCormick, G P, Chapter 8.4. In Selected Applications of Nonlinear Programming. John Wiley and Sons, New York, 1968, pp. 89-90.
• Original source: GAMS Model of least.gms from GAMS Model Library

Point: p1
Best known point: p1 with value 14085.1398

* NLP written by GAMS Convert at 07/30/01 10:16:32 * * Equation counts * Total E G L N X * 1 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 4 4 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 4 1 3 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4; Equations e1; e1.. - (sqr(127 + (-x3*exp(-5*x4)) - x2) + sqr(151 + (-x3*exp(-3*x4)) - x2) + sqr(379 + (-x3*exp(-x4)) - x2) + sqr(421 + (-x3*exp(5*x4)) - x2) + sqr(460 + (-x3*exp(3*x4)) - x2) + sqr(426 + (-x3*exp(x4)) - x2)) + objvar =E= 0; * set non default bounds x4.lo = -5; x4.up = 5; * set non default levels x2.l = 500; x3.l = -150; x4.l = -0.2; * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;