GLOBAL World [ GLOBAL World Home | GLOBALLib | Contact ]

ex7_3_6.gms:

References:

Point: p1 
Best known point: p1 with value 0.0000


* NLP written by GAMS Convert at 07/19/01 13:39:52 * * Equation counts * Total E G L N X * 18 11 0 7 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 18 18 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 80 26 54 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,objvar; Negative Variables x1,x2,x3,x5; Positive Variables x8,x9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18; e1.. - x9 + objvar =E= 0; e2.. x14*POWER(x8,4) - x16*POWER(x8,6) - x12*sqr(x8) + x10 =E= 0; e3.. x17*POWER(x8,6) - x15*POWER(x8,4) + x13*sqr(x8) - x11 =E= 0; e4.. - x1 - 1.2721*x9 =L= -3.4329; e5.. - x2 - 0.06*x9 =L= -0.1627; e6.. - x3 - 0.0782*x9 =L= -0.1139; e7.. x4 - 0.3068*x9 =L= 0.2539; e8.. - x5 - 0.0108*x9 =L= -0.0208; e9.. x6 - 2.4715*x9 =L= 2.0247; e10.. x7 + 9*x9 =L= 1; e11.. - (6.82079e-5*x1*x3*sqr(x4) + 6.82079e-5*x1*x2*x4*x5) + x10 =E= 0; e12.. - (0.00076176*sqr(x2)*sqr(x5) + 0.00076176*sqr(x3)*sqr(x4) + 0.000402141 *x1*x2*sqr(x5) + 0.00337606*x1*x3*sqr(x4) + 6.82079e-5*x1*x4*x5 + 0.00051612*sqr(x2)*x5*x6 + 0.00337606*x1*x2*x4*x5 + 6.82079e-5*x1*x2*x4* x7 + 6.28987e-5*x1*x2*x5*x6 + 0.000402141*x1*x3*x4*x5 + 6.28987e-5*x1*x3* x4*x6 + 0.00152352*x2*x3*x4*x5 + 0.00051612*x2*x3*x4*x6) + x11 =E= 0; e13.. - (0.000402141*x1*sqr(x5) + 0.00152352*x2*sqr(x5) + 0.0552*sqr(x2)*sqr( x5) + 0.0552*sqr(x3)*sqr(x4) + 0.0189477*x1*x2*sqr(x5) + 0.034862*x1*x3* sqr(x4) + 0.00336706*x1*x4*x5 + 6.82079e-5*x1*x4*x7 + 6.28987e-5*x1*x5*x6 + 0.00152352*x3*x4*x5 + 0.00051612*x3*x4*x6 - 0.00234048*sqr(x3)*x4*x6 + 0.034862*x1*x2*x4*x5 + 0.0237398*sqr(x2)*x5*x6 + 0.00152352*sqr(x2)*x5 *x7 + 0.00051612*sqr(x2)*x6*x7 + 0.00336706*x1*x2*x4*x7 + 0.00287416*x1* x2*x5*x6 + 0.000804282*x1*x2*x5*x7 + 6.28987e-5*x1*x2*x6*x7 + 0.0189477* x1*x3*x4*x5 + 0.00287416*x1*x3*x4*x6 + 0.000402141*x1*x3*x4*x7 + 0.1104* x2*x3*x4*x5 + 0.0237398*x2*x3*x4*x6 + 0.00152352*x2*x3*x4*x7 - 0.00234048 *x2*x3*x5*x6 + 0.00103224*x2*x5*x6) + x12 =E= 0; e14.. - (0.189477*x1*sqr(x5) + 0.1104*x2*sqr(x5) + 0.00051612*x5*x6 + sqr(x2)* sqr(x5) + 0.00076176*sqr(x2)*sqr(x7) + sqr(x3)*sqr(x4) + 0.1586*x1*x2* sqr(x5) + 0.000402141*x1*x2*sqr(x7) + 0.0872*x1*x3*sqr(x4) + 0.034862*x1* x4*x5 + 0.00336706*x1*x4*x7 + 0.00287416*x1*x5*x6 + 6.28987e-5*x1*x6*x7 + 0.00103224*x2*x6*x7 + 0.1104*x3*x4*x5 + 0.0237398*x3*x4*x6 + 0.00152352*x3*x4*x7 - 0.00234048*x3*x5*x6 + 0.1826*sqr(x2)*x5*x6 + 0.1104 *sqr(x2)*x5*x7 + 0.0237398*sqr(x2)*x6*x7 - 0.0848*sqr(x3)*x4*x6 + 0.0872* x1*x2*x4*x5 + 0.034862*x1*x2*x4*x7 + 0.0215658*x1*x2*x5*x6 + 0.0378954*x1 *x2*x5*x7 + 0.00287416*x1*x2*x6*x7 + 0.1586*x1*x3*x4*x5 + 0.0215658*x1*x3 *x4*x6 + 0.0189477*x1*x3*x4*x7 + 2*x2*x3*x4*x5 + 0.1826*x2*x3*x4*x6 + 0.1104*x2*x3*x4*x7 - 0.0848*x2*x3*x5*x6 - 0.00234048*x2*x3*x6*x7 + 0.00076176*sqr(x5) + 0.0474795*x2*x5*x6 + 0.000804282*x1*x5*x7 + 0.00304704*x2*x5*x7) + x13 =E= 0; e15.. - (0.1586*x1*sqr(x5) + 0.000402141*x1*sqr(x7) + 2*x2*sqr(x5) + 0.00152352*x2*sqr(x7) + 0.0237398*x5*x6 + 0.00152352*x5*x7 + 0.00051612* x6*x7 + 0.0552*sqr(x2)*sqr(x7) + 0.0189477*x1*x2*sqr(x7) + 0.0872*x1*x4* x5 + 0.034862*x1*x4*x7 + 0.0215658*x1*x5*x6 + 0.00287416*x1*x6*x7 + 0.0474795*x2*x6*x7 + 2*x3*x4*x5 + 0.1826*x3*x4*x6 + 0.1104*x3*x4*x7 - 0.0848*x3*x5*x6 - 0.00234048*x3*x6*x7 + 2*sqr(x2)*x5*x7 + 0.1826*sqr(x2)* x6*x7 + 0.0872*x1*x2*x4*x7 + 0.3172*x1*x2*x5*x7 + 0.0215658*x1*x2*x6*x7 + 0.1586*x1*x3*x4*x7 + 2*x2*x3*x4*x7 - 0.0848*x2*x3*x6*x7 + 0.0552*sqr( x5) + 0.3652*x2*x5*x6 + 0.0378954*x1*x5*x7 + 0.2208*x2*x5*x7) + x14 =E= 0; e16.. - (0.0189477*x1*sqr(x7) + 0.1104*x2*sqr(x7) + 0.1826*x5*x6 + 0.1104*x5* x7 + 0.0237398*x6*x7 + sqr(x2)*sqr(x7) + 0.1586*x1*x2*sqr(x7) + 0.0872*x1 *x4*x7 + 0.0215658*x1*x6*x7 + 0.3652*x2*x6*x7 + 2*x3*x4*x7 - 0.0848*x3*x6 *x7 + sqr(x5) + 0.00076176*sqr(x7) + 0.3172*x1*x5*x7 + 4*x2*x5*x7) + x15 =E= 0; e17.. - (0.1586*x1*sqr(x7) + 2*x2*sqr(x7) + 2*x5*x7 + 0.1826*x6*x7 + 0.0552* sqr(x7)) + x16 =E= 0; e18.. - sqr(x7) + x17 =E= 0; * set non default bounds x1.up = 3.4329; x2.up = 0.1627; x3.up = 0.1139; x4.lo = 0.2539; x5.up = 0.0208; x6.lo = 2.0247; x7.lo = 1; x8.up = 10; x9.up = 1; * set non default levels * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' Solve m using NLP minimizing objvar;