GLOBAL World [ GLOBAL World Home | GLOBALLib | Contact ]

ex6_2_7.gms:

References:

Point:


* NLP written by GAMS Convert at 07/19/01 13:39:46 * * Equation counts * Total E G L N X * 4 4 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 10 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 19 10 9 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10; Equations e1,e2,e3,e4; e1.. - ((10.4807341082197*x2 + 38.5043409542885*x5 + 8.73945638067505*x8)*log( 2.4088*x2 + 8.8495*x5 + 2.0086*x8) + 0.102582206615077*x2 - 4.55292602721008*x5 + 0.0196376909050935*x8 + 0.240734108219679*x2*log(x2) + 2.64434095428848*x5*log(x5) + 0.399456380675047*x8*log(x8) - 0.240734108219679*x2*log(2.4088*x2 + 8.8495*x5 + 2.0086*x8) - 2.64434095428848*x5*log(2.4088*x2 + 8.8495*x5 + 2.0086*x8) - 0.399456380675047*x8*log(2.4088*x2 + 8.8495*x5 + 2.0086*x8) + 11.24*x2* log(x2) + 36.86*x5*log(x5) + 9.34*x8*log(x8) - 11.24*x2*log(2.248*x2 + 7.372*x5 + 1.868*x8) - 36.86*x5*log(2.248*x2 + 7.372*x5 + 1.868*x8) - 9.34 *x8*log(2.248*x2 + 7.372*x5 + 1.868*x8) + (2.248*x2 + 7.372*x5 + 1.868*x8) *log(2.248*x2 + 7.372*x5 + 1.868*x8) + 2.248*x2*log(x2) + 7.372*x5*log(x5) + 1.868*x8*log(x8) - 2.248*x2*log(2.248*x2 + 5.82088173817021*x5 + 0.382446861901943*x8) - 7.372*x5*log(0.972461133672523*x2 + 7.372*x5 + 1.1893141713454*x8) - 1.868*x8*log(1.86752460515164*x2 + 2.61699842799583* x5 + 1.868*x8) + (10.4807341082197*x3 + 38.5043409542885*x6 + 8.73945638067505*x9)*log(2.4088*x3 + 8.8495*x6 + 2.0086*x9) + 0.102582206615077*x3 - 4.55292602721008*x6 + 0.0196376909050935*x9 + 0.240734108219679*x3*log(x3) + 2.64434095428848*x6*log(x6) + 0.399456380675047*x9*log(x9) - 0.240734108219679*x3*log(2.4088*x3 + 8.8495 *x6 + 2.0086*x9) - 2.64434095428848*x6*log(2.4088*x3 + 8.8495*x6 + 2.0086* x9) - 0.399456380675047*x9*log(2.4088*x3 + 8.8495*x6 + 2.0086*x9) + 11.24* x3*log(x3) + 36.86*x6*log(x6) + 9.34*x9*log(x9) - 11.24*x3*log(2.248*x3 + 7.372*x6 + 1.868*x9) - 36.86*x6*log(2.248*x3 + 7.372*x6 + 1.868*x9) - 9.34 *x9*log(2.248*x3 + 7.372*x6 + 1.868*x9) + (2.248*x3 + 7.372*x6 + 1.868*x9) *log(2.248*x3 + 7.372*x6 + 1.868*x9) + 2.248*x3*log(x3) + 7.372*x6*log(x6) + 1.868*x9*log(x9) - 2.248*x3*log(2.248*x3 + 5.82088173817021*x6 + 0.382446861901943*x9) - 7.372*x6*log(0.972461133672523*x3 + 7.372*x6 + 1.1893141713454*x9) - 1.868*x9*log(1.86752460515164*x3 + 2.61699842799583* x6 + 1.868*x9) + (10.4807341082197*x4 + 38.5043409542885*x7 + 8.73945638067505*x10)*log(2.4088*x4 + 8.8495*x7 + 2.0086*x10) + 0.102582206615077*x4 - 4.55292602721008*x7 + 0.0196376909050935*x10 + 0.240734108219679*x4*log(x4) + 2.64434095428848*x7*log(x7) + 0.399456380675047*x10*log(x10) - 0.240734108219679*x4*log(2.4088*x4 + 8.8495*x7 + 2.0086*x10) - 2.64434095428848*x7*log(2.4088*x4 + 8.8495*x7 + 2.0086*x10) - 0.399456380675047*x10*log(2.4088*x4 + 8.8495*x7 + 2.0086*x10 ) + 11.24*x4*log(x4) + 36.86*x7*log(x7) + 9.34*x10*log(x10) - 11.24*x4* log(2.248*x4 + 7.372*x7 + 1.868*x10) - 36.86*x7*log(2.248*x4 + 7.372*x7 + 1.868*x10) - 9.34*x10*log(2.248*x4 + 7.372*x7 + 1.868*x10) + (2.248*x4 + 7.372*x7 + 1.868*x10)*log(2.248*x4 + 7.372*x7 + 1.868*x10) + 2.248*x4*log( x4) + 7.372*x7*log(x7) + 1.868*x10*log(x10) - 2.248*x4*log(2.248*x4 + 5.82088173817021*x7 + 0.382446861901943*x10) - 7.372*x7*log( 0.972461133672523*x4 + 7.372*x7 + 1.1893141713454*x10) - 1.868*x10*log( 1.86752460515164*x4 + 2.61699842799583*x7 + 1.868*x10) - 12.7287341082197* x2*log(x2) - 45.8763409542885*x5*log(x5) - 10.607456380675*x8*log(x8) - 12.7287341082197*x3*log(x3) - 45.8763409542885*x6*log(x6) - 10.607456380675*x9*log(x9) - 12.7287341082197*x4*log(x4) - 45.8763409542885*x7*log(x7) - 10.607456380675*x10*log(x10)) + objvar =E= 0; e2.. x2 + x3 + x4 =E= 0.4; e3.. x5 + x6 + x7 =E= 0.1; e4.. x8 + x9 + x10 =E= 0.5; * set non default bounds x2.lo = 1E-7; x2.up = 0.4; x3.lo = 1E-7; x3.up = 0.4; x4.lo = 1E-7; x4.up = 0.4; x5.lo = 1E-7; x5.up = 0.1; x6.lo = 1E-7; x6.up = 0.1; x7.lo = 1E-7; x7.up = 0.1; x8.lo = 1E-7; x8.up = 0.5; x9.lo = 1E-7; x9.up = 0.5; x10.lo = 1E-7; x10.up = 0.5; * set non default levels x2.l = 0.0088; x3.l = 0.33595; x4.l = 0.05525; x5.l = 0.00065; x6.l = 0.00193; x7.l = 0.09742; x8.l = 0.30803; x9.l = 0.147; x10.l = 0.04497; * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' Solve m using NLP minimizing objvar;