GLOBAL World [ GLOBAL World Home | GLOBALLib | Contact ]

ex14_2_3.gms:

Reference:

Point: p1 
Best known point: p1 with value 0.0000


* NLP written by GAMS Convert at 07/19/01 13:40:28 * * Equation counts * Total E G L N X * 10 2 0 8 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 54 14 40 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,objvar,x7; Positive Variables x7; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10; e1.. objvar - x7 =E= 0; e2.. log(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002* x4) + 1.55190688128384*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.767395887387844*x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.989870205661735*x4/( 0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 2787.49800065313/(229.664 + x5) - x7 =L= 10.7545020354713; e3.. log(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 1.2689544013438*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + x2/(1.55190688128384*x1 + x2 + 0.696676834276998* x3 + 1.27289874839144*x4) + 0.176307940228365*x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.928335072476283*x4/( 0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 2696.24885600287/(226.232 + x5) - x7 =L= 10.3803549837107; e4.. log(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436* x4) + 0.696334182309743*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 0.696676834276998*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.308103094315467* x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 3643.31361767678/(239.726 + x5) - x7 =L= 12.9738026256517; e5.. log(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 0.590071729272002*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 1.27289874839144*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.187999658986436*x3/( 0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 2755.64173589155/(219.161 + x5) - x7 =L= 10.2081676704566; e6.. (-log(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002* x4)) - (x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 1.55190688128384*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.767395887387844*x3/( 0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.989870205661735*x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 2787.49800065313/(229.664 + x5) - x7 =L= -10.7545020354713; e7.. (-log(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144* x4)) - (1.2689544013438*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.176307940228365*x3/( 0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.928335072476283*x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 2696.24885600287/(226.232 + x5) - x7 =L= -10.3803549837107; e8.. (-log(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436 *x4)) - (0.696334182309743*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743 *x3 + 0.590071729272002*x4) + 0.696676834276998*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + x3/(0.767395887387844* x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.308103094315467 *x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 3643.31361767678/(239.726 + x5) - x7 =L= -12.9738026256517; e9.. (-log(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - (0.590071729272002*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 1.27289874839144*x2/( 1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.187999658986436*x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 2755.64173589155/(219.161 + x5) - x7 =L= -10.2081676704566; e10.. x1 + x2 + x3 + x4 =E= 1; * set non default bounds x1.lo = 1E-6; x1.up = 1; x2.lo = 1E-6; x2.up = 1; x3.lo = 1E-6; x3.up = 1; x4.lo = 1E-6; x4.up = 1; x5.lo = 20; x5.up = 80; * set non default levels x1.l = 0.295; x2.l = 0.148; x3.l = 0.463; x4.l = 0.094; x5.l = 57.154; * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' Solve m using NLP minimizing objvar;