[ GLOBAL World Home | GLOBALLib | Contact ]

## ex14_1_7.gms:

#### References:

• Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding, S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, 1999.
• Ratschek, H, and Rokne, J, A Circuit Design Problem. J. Global Opt. 3 (1993), 501.
• Original source: Global Model of Chapter 14 ex14.1.7.gms from Floudas e.a. Test Problems

Point:

* NLP written by GAMS Convert at 07/19/01 13:40:26 * * Equation counts * Total E G L N X * 18 2 0 16 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 118 18 100 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18; e1.. - x10 + objvar =E= 0; e2.. (1 - x1*x2)*x3*(exp(x5*(0.485 + (-0.0052095*x7) - 0.0285132*x8)) - 1) + 23.3037*x2 - x10 =L= 28.5132; e3.. (1 - x1*x2)*x3*(exp(x5*(0.752 + (-0.0100677*x7) - 0.1118467*x8)) - 1) + 101.779*x2 - x10 =L= 111.8467; e4.. (1 - x1*x2)*x3*(exp(x5*(0.869 + (-0.0229274*x7) - 0.1343884*x8)) - 1) + 111.461*x2 - x10 =L= 134.3884; e5.. (1 - x1*x2)*x3*(exp(x5*(0.982 + (-0.0202153*x7) - 0.2114823*x8)) - 1) + 191.267*x2 - x10 =L= 211.4823; e6.. (-(1 - x1*x2)*x3*(exp(x5*(0.485 + (-0.0052095*x7) - 0.0285132*x8)) - 1)) - 23.3037*x2 - x10 =L= -28.5132; e7.. (-(1 - x1*x2)*x3*(exp(x5*(0.752 + (-0.0100677*x7) - 0.1118467*x8)) - 1)) - 101.779*x2 - x10 =L= -111.8467; e8.. (-(1 - x1*x2)*x3*(exp(x5*(0.869 + (-0.0229274*x7) - 0.1343884*x8)) - 1)) - 111.461*x2 - x10 =L= -134.3884; e9.. (-(1 - x1*x2)*x3*(exp(x5*(0.982 + (-0.0202153*x7) - 0.2114823*x8)) - 1)) - 191.267*x2 - x10 =L= -211.4823; e10.. (1 - x1*x2)*x4*(exp(x6*(0.116 + 0.0233037*x9 - 0.0052095*x7)) - 1) - 28.5132*x1 - x10 =L= -23.3037; e11.. (1 - x1*x2)*x4*(exp(x6*(0.101779*x9 - 0.0100677*x7 - 0.502)) - 1) - 111.8467*x1 - x10 =L= -101.779; e12.. (1 - x1*x2)*x4*(exp(x6*(0.166 + 0.111461*x9 - 0.0229274*x7)) - 1) - 134.3884*x1 - x10 =L= -111.461; e13.. (1 - x1*x2)*x4*(exp(x6*(0.191267*x9 - 0.0202153*x7 - 0.473)) - 1) - 211.4823*x1 - x10 =L= -191.267; e14.. 28.5132*x1 - (1 - x1*x2)*x4*(exp(x6*(0.116 + 0.0233037*x9 - 0.0052095*x7) ) - 1) - x10 =L= 23.3037; e15.. 111.8467*x1 - (1 - x1*x2)*x4*(exp(x6*(0.101779*x9 - 0.0100677*x7 - 0.502) ) - 1) - x10 =L= 101.779; e16.. 134.3884*x1 - (1 - x1*x2)*x4*(exp(x6*(0.166 + 0.111461*x9 - 0.0229274*x7) ) - 1) - x10 =L= 111.461; e17.. 211.4823*x1 - (1 - x1*x2)*x4*(exp(x6*(0.191267*x9 - 0.0202153*x7 - 0.473) ) - 1) - x10 =L= 191.267; e18.. x1*x3 - x2*x4 =E= 0; * set non default bounds x1.up = 10; x2.up = 10; x3.up = 10; x4.up = 10; x5.up = 10; x6.up = 10; x7.up = 10; x8.up = 10; x9.up = 10; * set non default levels * set non default marginals Model m / all /; m.limrow=0; m.limcol=0; \$if NOT '%gams.u1%' == '' \$include '%gams.u1%' Solve m using NLP minimizing objvar;